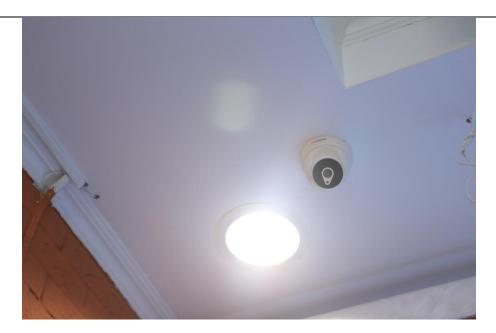


ОТЧЕТ

Южно-Казахстанского университета им.М.Ауэзова по устойчивому развитию в 2019-2021гг.

Green AUEZOV



2. Энергия и изменение климата

Использование энергоэффективных приборов

Использование энергоэффективных приборов: использование светодиодного освещения и ламп с функцией обнаружения света.

Энергоэффективные компьютеры

Гелиокамера для аккумулирования солнечной энергии.

Применение энергоэффективных приборов: лабораторные работы по специальности «Энергетика» с использованием солнечных батарей

В 2020 году в связи с пандемией Covid-19 университет закупил новые энергосберегающие компьютеры без системного блока. Приобретено 200 Моноблоков мощностью 90 Вт / ч. Они заменили обычные компьютеры мощностью 150-160 Вт / ч. Таким образом, университет сэкономил около 14 000 Вт / час электроэнергии.

Южно-Казахстанский университет им. М.Ауэзова намерен добиться дальнейшего энергосбережения, уделяя пристальное внимание энергоменеджменту. Все подразделения организации могут оценить собственное потребление энергии и реализовать свой собственный потенциал энергосбережения, например, с помощью изоляции, светодиодного освещения и внедрения устойчивых технологий.

Прибор	Общее количество	Общее количество энергоэффективных приборов	В процентах		
Энергоэффективные компьютеры	1597	200	12,5%		
Энергосберегающие лампы*	22739	19147	100%		
Светодиодные лампы*		3592			
Лабораторные приборы	2790	283	10%		
		Средний процент	40,8%		

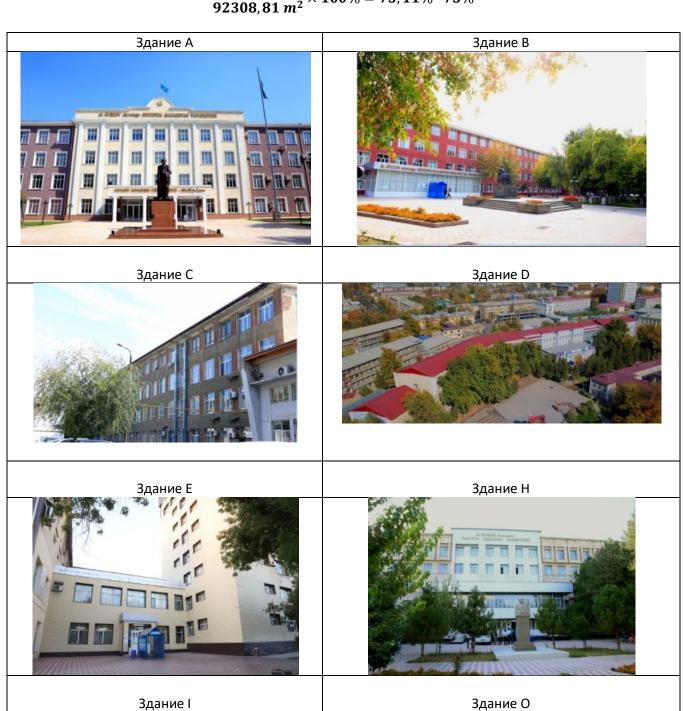
^{*} В связи с отсутствием в университете ламп накаливания все лампы являются энергоэффективными.

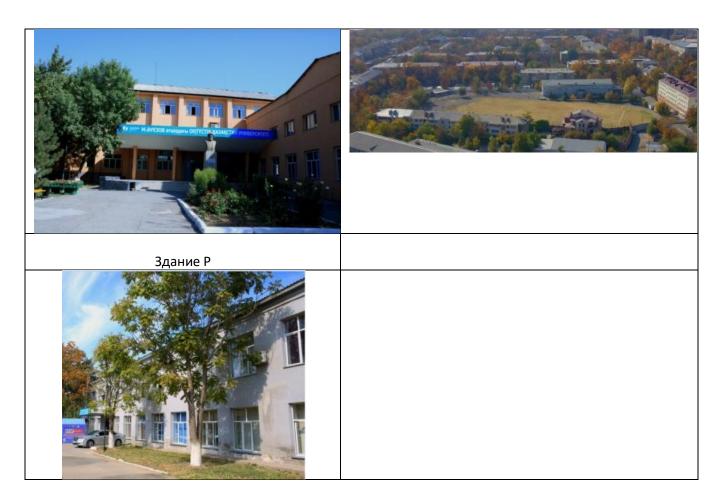
Внедрение программы «Умное здание»

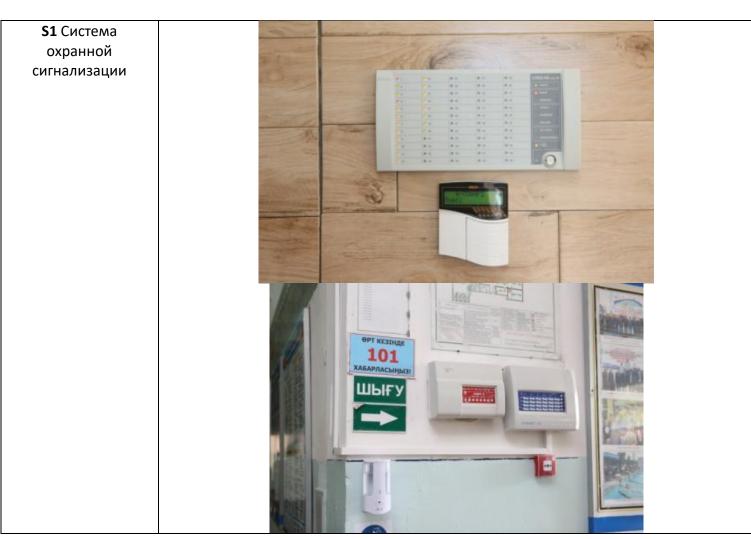
*Міп. Минимум пять требований для каждого здания

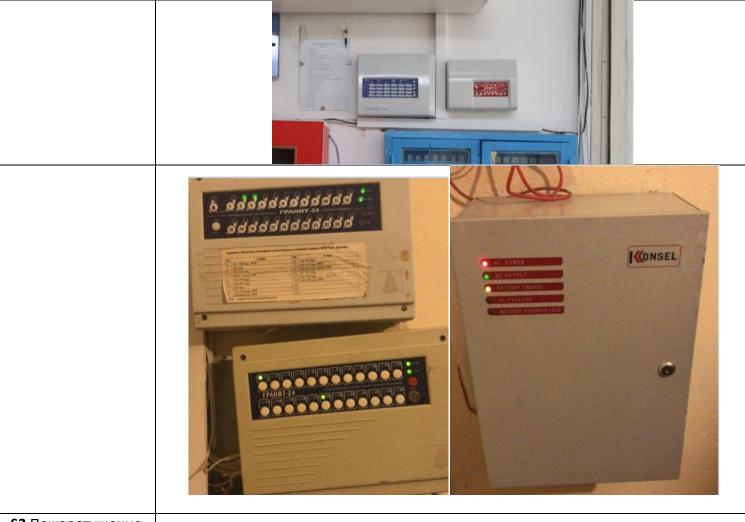
No.	Наименование	Место	Автоматизац ия		ждого здан Резоизсность				Энергия		Вода			Окружающая	среда в помещении		Освещение				Площадь застройки (m²)
			В1	В2	S1	S2	S3	S4	E1	E2	A1	A2	I1	12	13	14	L1	L2	L3	L4	
	University M.Auezov SKU; Building A (главный корпус)	Shymkent City, Kazakhstan			x	x	х				x		x				х				15883,70
2	University M.Auezov SKU; Building B (Kopnyc 1)	Shymkent City, Kazakhstan				х	х				х		х				х				6016
3	University M.Auezov SKU; Building C (Корпус 2)	Shymkent City, Kazakhstan			х	х	х				x		х				х				6573,78
	University M.Auezov SKU Building D (Корпус 3)	Shymkent City, Kazakhstan			х	х	х				х		х				х				14381,80
	University M.Auezov SKU Building E (Корпус 4)	Shymkent City, Kazakhstan				х	х				х		х				х				5454
l 6	University M.Auezov SKU Building F (Корпус 5)	Shymkent City, Kazakhstan					x				x		x				x				4596,5
	University M.Auezov SKU; Building G (Корпус 7)	Shymkent City, Kazakhstan					x				x		х				x				6636,70
	University M.Auezov SKU; Building H (Корпус 8)	Shymkent City, Kazakhstan				х	x				x		х				x				9506,20
	University M.Auezov SKU; Building I (Корпус 9)	Shymkent City, Kazakhstan				x	x				x		х				x				5456,10
10	University M.Auezov SKU; Building J (Корпус 10)	Shymkent City, Kazakhstan					х				x		х				х				2607,10
	University M.Auezov SKU; Building K (Корпус 11)	Shymkent City, Kazakhstan					х				x		х				х				2591,30
	University M.Auezov SKU; Building L (Корпус 12)	Shymkent City, Kazakhstan					х				х		х				х				1826,40
	University M.Auezov SKU; Building M (Корпус 13)	Shymkent City, Kazakhstan					x				x		х				х				4711,23
	University M.Auezov SKU; Building N (Корпус 14)	Shymkent City, Kazakhstan					x				х		х				х				1848,30
	University M.Auezov SKU; Building O (Корпус 15)	Shymkent City, Kazakhstan			x	х	x				x		х				х				2134,9
16	University M.Auezov SKU; Building P	Shymkent City, Kazakhstan			х	х	х				х		х				х				2084,80

(Корпус 16)											
	Total										67491,28


— Пожалуйста, составьте по одной строке для каждого здания (или однородной его части), отметив X для каждого требования—

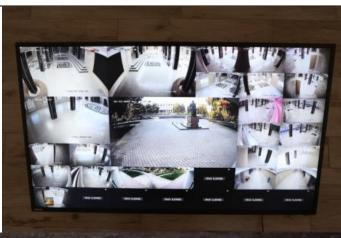

Внедрение программы «умных зданий»


 $\frac{\textit{Общая площадь умных зданий}}{\textit{Общая площадь застройки}} \times 100\%$

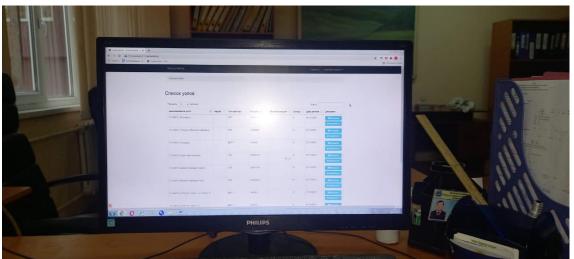

*Общая площадь застройки: 92308,81 m²

$$\frac{67491,28\ m^2}{92308,81\ m^2}\times 100\% = 73,11\%{\sim}73\%$$

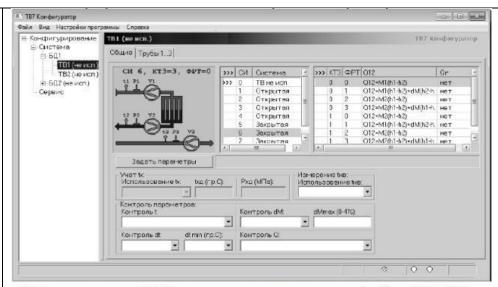
\$2 Пожаротушение



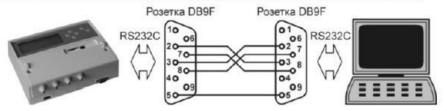
S3 Видеонаблюдение



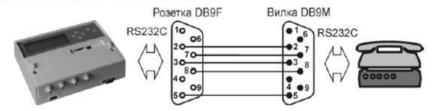
А1 Мониторинг воды



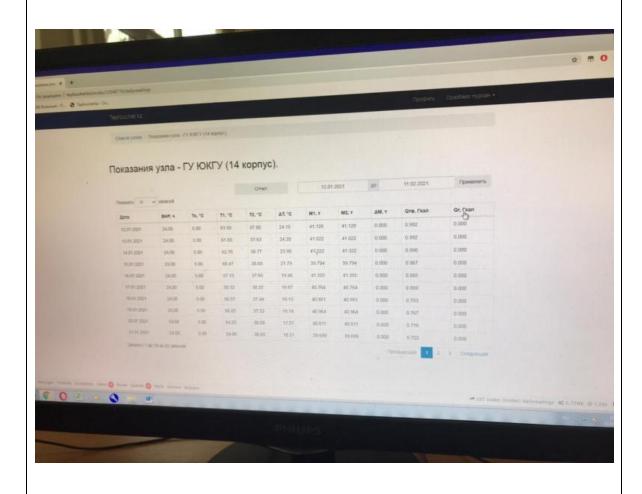
Потребление воды в каждом корпусе автоматически передается на монитор компьютера, установленного в комнате инженеров в корпусе 16.

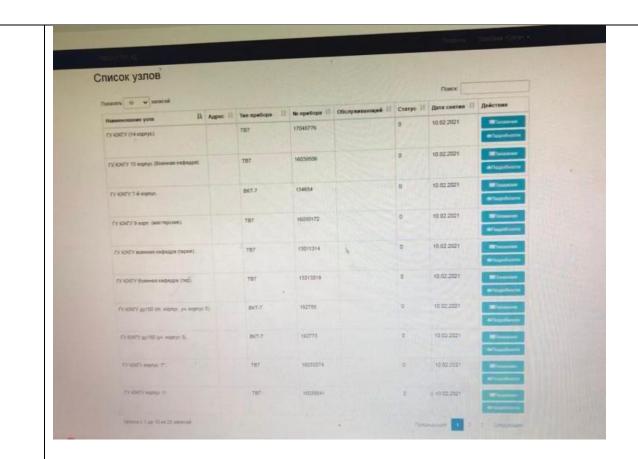

I1 Тепловой комфорт

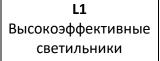
Мониторинг тепла в университете по всем корпусам проводится в 113 аудитории 5 корпуса.

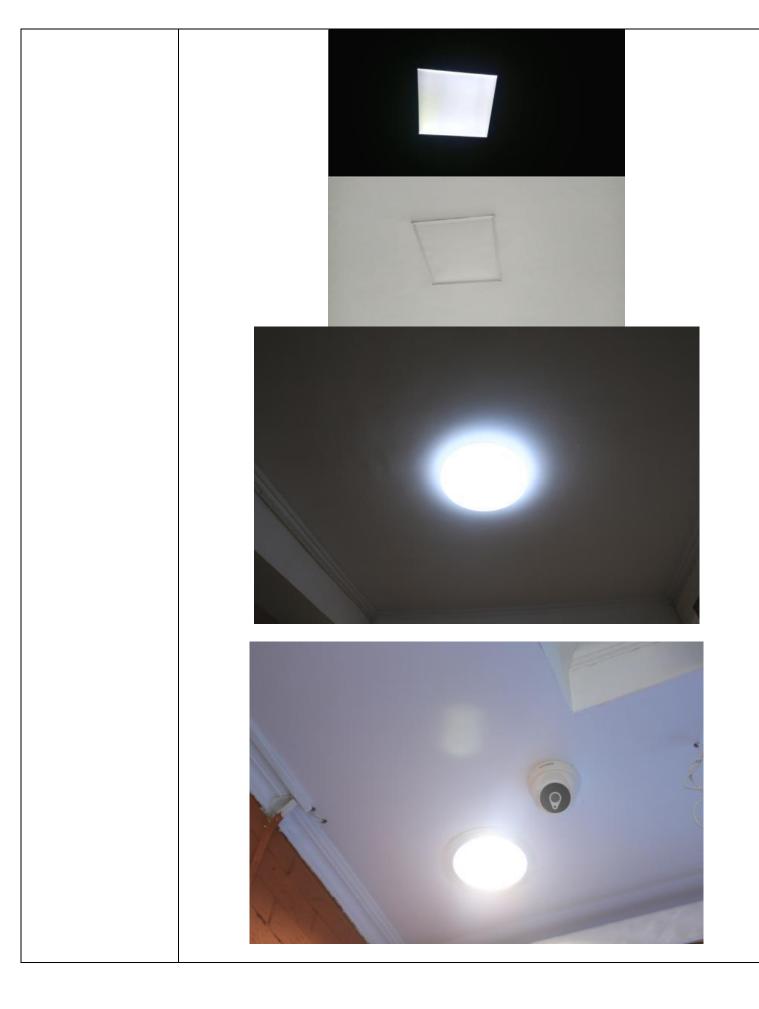

Электромагнитный теплосчетчик «Теплоучет». Это устройство подходит для работы с горячей и холодной водой, которая контролирует приток и отток теплоносителя в системах отопления. Поток жидкости, в которой различные примеси и воздух составляют крошечную долю (не более одного процента), регистрируются и преобразуются в электрические сигналы. Так работает первичный преобразователь. Проверяет температуру в гигакалориях (Гкал) на сколько градусов. В корпусах университета подключены приборы ВКТ-7 и ТВ-7.

1 Подключение ТВ7 к компьютеру по интерфейсу RS232C




2 Подключение ТВ7 к модему





Показания тепла в Южно-Казахстанском Университете им.М.Ауэзова контролируются автоматически на компьютере в комнате инженеров, в случае аварии Кнопка на мониторе загорается красным цветом.

Возобновляемые источники энергии в кампусе

Кампус 1. Гелиокамера для аккумулирования солнечной энергии

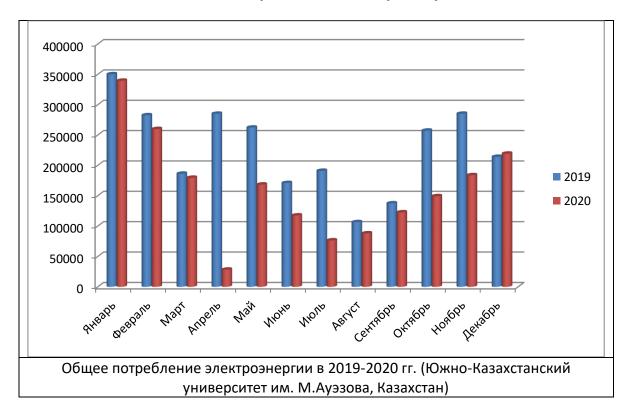
1. Солнечная батарея расположена на крыше здания напротив корпуса 4, куда попадают солнечные лучи максимально эффективное время.

Солнечная энергия через кабели аккумулируется в аккумуляторах, потом подается на преобразователи и постоянный ток 12В преобразовывается в переменный ток 220В. Выработанную таким образом энергию можно использовать для освещения, зарядного устройства телефонов, нетбуков и персонального компьютера.

Номинальная мощность батареи составляет 200 Вт, напряжение на панели 12В.

2. Гелиокамера для аккумулирования солнечной энергии установлена на крыше Научноисследовательской лаборатории «Строительных материалов, строительства и архитектуры». Гелиокамера используется для окончательной термообработки бетонных блоков.

В верхней крышке гелиокамеры находится пластина, аккумулирующая солнечную энергию. Внизу в камере вода, являющаяся теплоносителем. Вода циркулирует по бокам и днищу приёмника, внутри которого находится бетон. Нагретая вода отдает теплоту фазового перехода изделию. Таким образом, происходит обмен тепла, в результате которого бетон прогревается с нарастанием прочности без применения дополнительной энергии.


Для проведения и реализации научной работы был получен грант по программе «Зеленая экономика», утвержденной Н.А.Назарбаевым. Результаты данной работы были представлены на международных научно-практических конференциях: в 2014 году в г.Веймар (Германия), в 2015 году в Японии, в 2019 году в г.Белгород (Россия)

Всего в университете два источника возобновляемой энергии:

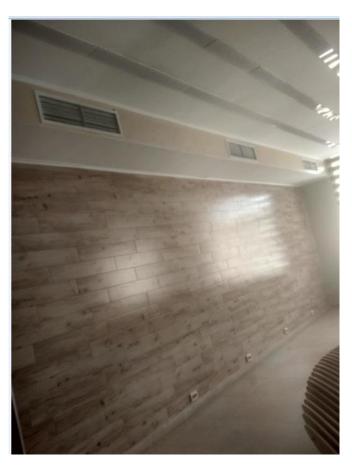
- 1. Солнечная батарея, использует солнечную энергию
- 2. Гелиокамера, использует комбинированное производство тепла и энергии

Мощность двух возобновляемых источников энергии на территории кампуса составляет примерно 1 кВтч.

Годовое потребление электроэнергии

Суммарное потребление электроэнергии в кампусах Южно-Казахстанского Университета им.М.Ауэзова на 2020 год составляет 1,931,622 кВтч. Электричество в университете используется для освещения, отопления и охлаждения, рабочих компьютеров и других электроприборов и лабораторного оборудования. В связи с Пандемией Ковид-19, потребление электроэнергии уменьшилось по сравнению с 2020 годом в 2,2 раза.

Отношение производства возобновляемой энергии к общему потреблению энергии в год

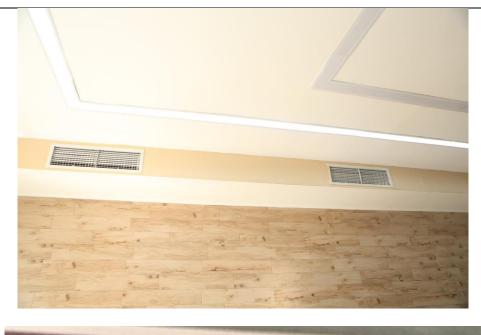


Кампус 1. Гелиокамера для аккумулирования солнечной энергии

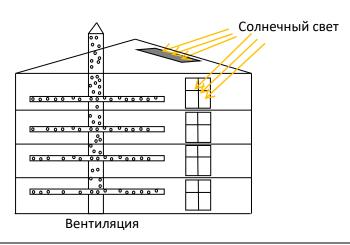
No	Возобновляемая энергия	Производство (в кВтч)
1	Солнечная батарея	1
2	Гелиокамера	1
	Сумма	2

2 (кВч) * 6 (часов солнца в день) * 80 (солнечные рабочие дни) = 960 кВч в Год 960 / 1 931 622 (Потребление электроэнергии) = 0.049 %

Элементы реализации зеленого строительства, отраженные во всех стратегиях строительства и ремонта



Естественная вентиляция в Кампусах университета.



Естественное освещение благодаря большому количеству панорамных окон

Схематичное изображение естественной вентиляции и освещения. На крыше здания есть солнечная панель, аккумулирующая солнечную энергию. Вентиляционная шахта выходит через чердак на крышу здания. Большие окна гарантируют поступление естественного освещения

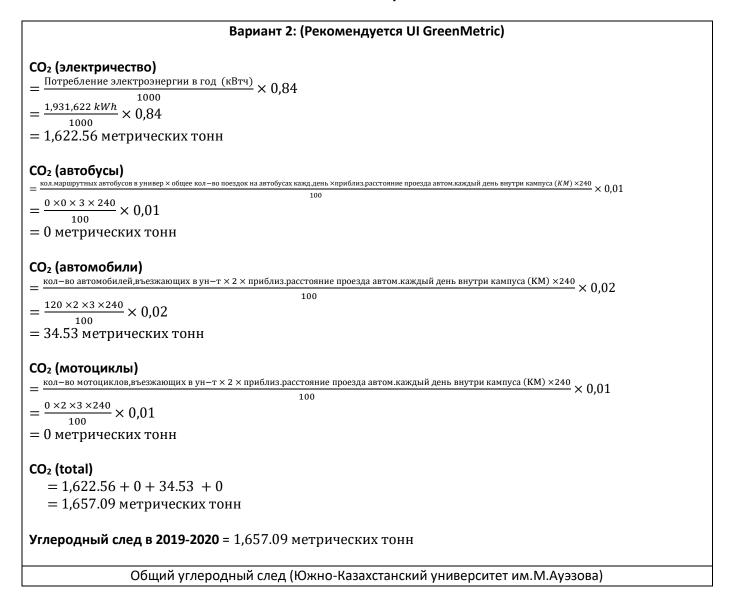
Дождевой сток с крыши главного корпуса кампуса 1

В университете реализуется экологическое строительство. Это подтверждается наличием естественной вентиляции через вентиляционные шахты и наличием большого количества панорамных окон для естественного освещения.

Также при строительстве на крышах всех зданий университета были предусмотрены ливневые стоки, куда попадает дождевая вода. Таким образом, дождевая вода собирается с крыш зданий и по разветвленной сети арыков уходит на полив многочисленных полей, парков с растительностью или цветников.

Таким образом, при строительстве Университета были реализованы три элемента зеленого строительства:

- 1. Естественная вентиляция
- 2. Естественный солнечный свет
- 3. Ливневые стоки дождевой воды


Программа сокращения выбросов парниковых газов

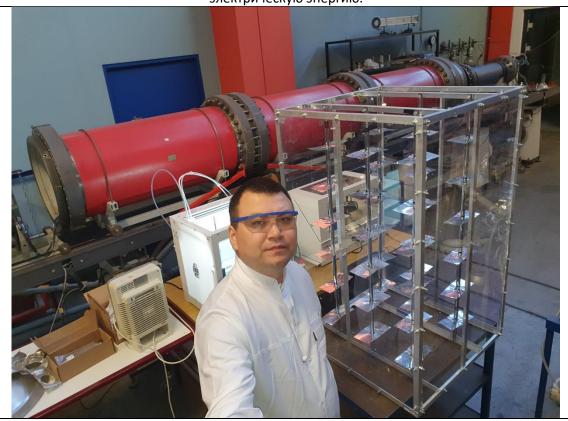
Программа сокращения парниковых газов Южно-Казахстанского государственного университета им.М.Ауэзова включает следующие пункты:

- 1. Использование солнечных батарей и гелиокамеры направлены на сокращение выбросов от источников 2 типа.
- 2. Сокращение поездок на личном автотранспорте посредством уменьшения парковочных мест, а также совместное использование транспортных средств. Данный пункт направлен на сокращение выбросов от источников 3 типа.
- 3. В 2021 году университетом будет заключен договор с исполнительной компанией по бурению скважины для технической воды на территории университета. Данный пункт направлен на сокращение выбросов от источников 3 типа.

Общий углеродный след (выбросы CO₂ за последние 12 месяцев, в метрических тоннах)

В связи с тем, что количество автобусов, автомобилей и мотоциклов, используемых в Южно-Казахстанском университете им. М.Ауэзова, невелико, то общий углеродный след составляет небольшую величину.

Количество инновационных программ во время пандемии Covid-19


Система стерилизации умных помещений с использованием ультрафиолетовых лучей Инновационная программа (M.Auezov South Kazakhstan University)

Для Южно-Казахстанского университета инновацией в 2020 году в связи с пандемией Ковид-19 является использование кварцевых ламп для стерилизации помещений во время отсутствия в них студентов и преподавателей. Университетом было закуплено 340 кварцевых ламп. Из них 297 ламп были поставлены в кабинеты по всем учебным корпусам университета.

Эффективная университетская программа (ы) по изменению климата

Программа установки для преобразования кинетической энергии воздушного потока в электрическую энергию.

Программой Южно-Казахстанского университета им.М.Ауэзова по эффективному изменению климата является проект ученого Серикулы Жандоса, который реализуется совместно с университетом Германии Аахен (RWTH Aachen University) под названием «Установка на основе закономерностей вихревого взаимодействия потоков для преобразования кинетической энергии воздушного потока в электрическую энергию»

В результате реализации данного проекта создана установка для преобразования кинетической энергии воздушного потока в электрическую энергию. Отличием данного продукта является простота конструкции и монтажа, применимо абсолютно в любых зданиях и сооружениях. А также может использовать кинетическую энергию не только ветра, но и других источников, таких как отработанные газовые, воздушные потоки для оптимизации затрат предприятия. Номер проекта APP-PHD-A-19/011P

http://www.fpip.kz/index.php/en/grant-programs/phd

https://m.facebook.com/story.php?story_fbid=4006738016036455&id=100001008874479&sfnsn=mo

https://m.facebook.com/eesijournal/photos/a.132873841765724/149107940142314/?type=3&source=57